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The nature of instability occurring in a differentially heated infinite slot under steady
gravity depends only on the Prandtl number of the contained Boussinesq fluid. For
fluids with Pr < 12.5, the instability is shear dominated and onsets in a steady
convection mode; for fluids with Pr > 12.5, the instability is buoyancy dominated
and onsets in an oscillatory mode. In this paper, we examine the effect of gravity
modulation on the stability characteristics of convection in an infinite slot with both
kinds of fluids, in particular, Pr = 1 and Pr = 25. Using the method of Sinha & Wu
(1991), we are able to obtain accurate results without excessive numerical integration
in the linear stability analysis by Floquet theory. Results show that, for Pr = 1, at
a non-dimensional oscillation frequency ω = 20, the critical state alternates between
the synchronous and subharmonic modes. At higher frequencies, ω > 100, all critical
states occur in the synchronous mode. For Pr = 25, with a modulation amplitude
ratio of 0.5, resonant interaction occurs in the neighbourhood of ω = 2σc, where σc
is the oscillation frequency of the instability at the critical state under steady gravity.
This resonant interaction is destabilizing, with the critical Grashof number being
reduced by approximately 20% from that at steady gravity. It is due to the presence
of a detached subharmonic branch of the marginal stability curve. In frequency
ranges where the detached subharmonic branch is absent, the critical state is in the
quasi-periodic mode consisting of two waves of different oscillation frequencies whose
sum is the forcing frequency. An analysis of the rate of change of the perturbation
kinetic energy shows that, for Pr = 1, the instability is shear dominated regardless
of the mode of oscillation, synchronous or subharmonic. Similarly, for Pr = 25, the
instability is buoyancy dominated whether it is in the quasi-periodic or subharmonic
mode. The mode switching is a response to the forcing and is independent of the
dominant mechanisms of instability.

1. Introduction
An inverted pendulum can be stabilized by oscillating the pivot in the vertical direc-

tion with suitable frequency and amplitude. By the same physical process, the density
inversion in a horizontal fluid layer heated from below can likewise be stabilized by
vertical oscillation of the layer at suitable frequency and amplitude. This result was
obtained through the use of linear stability theory by Gresho & Sani (1970), who
first noted the analogy, and by Gershuni, Zhukhovitskii & Iurkov (1970). Gresho &
Sani showed that the instability may be in the synchronous or subharmonic mode
and that substantial stabilization can be obtained. Biringen & Peltier (1990) investi-
gated the three-dimensional Rayleigh–Bénard problem under gravity modulation by
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numerical solution of the full Navier–Stokes equation. For a case predicted to be
stable by Gresho & Sani at a Rayleigh number of 4500, they showed that any initial
perturbations in the velocity amplitude vanished in a short time.

Saunders et al. (1992) studied the effect of gravity modulation on the stability of
a double-diffusive layer with stress-free boundaries in both the finger and diffusive
cases. They presented stability boundaries in the plane spanned by amplitude and the
inverse of modulation frequency for a number of examples. Terrones & Chen (1993)
extended the stability study to double-diffusive layers with cross-diffusion including
rigid boundaries. A striking feature they found in a double-diffusive layer of low
Prandtl number (10−2) fluid is the existence of bifurcating neutral curves with double
minima, one of which corresponds to a quasi-periodic asymptotically stable branch
and the other to a subharmonic neutral solution. As a consequence, a temporally
and spatially quasi-periodic bifurcation from the basic state is possible, in which case
there are two incommensurate critical wavenumbers at two incommensurate onset
frequencies at the same Rayleigh number. With the presence of cross-diffusion, the
subharmonic and the quasi-periodic neutral curves become disconnected.

Convection in an infinite vertical slot has attracted a number of investigators
because it offers a relatively simple basic flow to study the instability phenomenon
encountered in more practical problems. A brief summary of earlier results was
presented by Thangam & Chen (1986), and a more comprehensive review can be
found in Chen & Pearlstein (1989). Convection in a fluid contained within an infinite
slot with differentially heated walls consists of parallel flows up along the hot wall
and down along the cold wall. When the temperature differences across the slot, ∆T ,
exceeds the critical value, the convection flow becomes unstable. If the Prandtl number,
Pr, of the fluid is less than ∼12.5, the instability onsets as steady convection rolls in a
vertical array. If Pr > 12.5, the initial onset is in the oscillatory mode. For the small Pr
case, the instability arises in the shear flow generated by buoyancy. At higher Prandtl
numbers, the diminished influence of the thermal diffusivity allows the potential
energy caused by buoyancy to be transferred into perturbations. This oscillatory
instability eventually grows into convection cells, as observed experimentally by Vest
& Arpaci (1969) and Chen & Thangam (1985) in high aspect ratio tanks.

Baxi, Arpaci & Vest (1974) were the first to study the effect of gravity modulation on
the stability of convection in a vertical slot by linear stability analysis using the Floquet
theory. They studied cases with the non-dimensional modulation frequency ω > 100.
They found, as in a horizontal layer, that convection can either be stabilized or
destabilized in different parametric ranges of the modulation frequence and amplitude.
Gershuni & Zhukhovitskii (1981) studied the problem under high-frequency gravity
modulation with zero mean in any arbitrary direction. The linear stability problem
was solved using the method of averaging. Sharifulin (1983) extended the problem to
include a non-zero mean but confined the gravity to be in the longitudinal direction
of the slot containing fluids with 0 6 Pr 6 10. His conclusion is that high-frequency
modulation destabilizes the flow. Recently, Farooq & Homsy (1996) considered the
effect of gravity modulation on the linear and nonlinear convection in a slot. The
slot is differentially heated with a constant vertical temperature gradient to better
approximate the conditions in a finite slot of high aspect ratio. Besides the steady and
oscillating modes found in an infinite slot, there is one additional internal wave mode
associated with the initial stratification. At small modulation amplitudes, resonant
interaction occurs when the modulation frequency matches that of the natural modes
of the system. When the modulation amplitude is of the same order as the mean
gravity, the parallel-flow modes can be destabilized by the oscillation.
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In this paper, we examine the stability characteristics of slot convection under
gravity modulation at frequency ω = 20 by linear stability analysis. We note that
previous stability studies of this problem were carried out at higher frequency ranges,
ω > 100. By applying the method of Sinha & Wu (1991), we are able to obtain accurate
results for the eigenvalues without excessive numerical integration. In particular, we
examine the effect of gravity modulation on fluids in which instability onsets in a
steady convection mode (Pr = 1 < 12.5) or in an oscillatory mode (Pr = 25 > 12.5)
under steady gravity.

Aside from their having different characteristics at the onset of instability, the
choice of fluids with Pr = 1 and 25 was made with practical considerations for
possible experimental investigations in mind. Pr = 1 is for air, and we have extensive
numerical simulation results of its behaviour under gravity modulation (Jin & Chen
1997). Pr = 25 is of similar magnitude to several commonly available fluids or fluid
mixtures, such as ethanol (Pr = 17) and 30 wt% glycerol–water solution (Pr = 26).

In the following, the basic state and the linear stability equations are presented
in § 2. The method of solution by the Floquet theory and the use of the Chebyshev
expansion for calculating the results are briefly explained in § 3, along with all the
terms comprising the time rate of change of the perturbation kinetic energy in § 4.
Results for Pr = 1 and 25 are discussed in § 5, and conclusions are presented in § 6.

2. The basic state and the stability equations
Consider two-dimensional fluid motion in an infinite vertical slot of width H whose

vertical sides are maintained at different constant temperatures. The gravity vector is
pointing downward, and its magnitude oscillates with amplitude g1 and frequency Ω
about a mean g0:

g = g0 + g1 cosΩt. (1)

Let the origin of the x, y coordinate system be at the midplane of the slot. The density
of the fluid is assumed to be linear with temperature,

ρ = ρ0[1− α(T − T0)] with α = −1

ρ

∂ρ

∂T
. (2)

All other thermal physical properties are assumed to be constant. The equations of
motion and energy, with the Boussinesq assumption, are rendered non-dimensional
by the characteristic length H , time H2/ν, temperature ∆T , and velocity ν/H in which
ν is the kinematic viscosity and ∆T is the temperature difference across the slot.

For the basic state in which the only non-zero component of the velocity is in the
vertical direction, W (x, t), and the temperature T is independent of z and linear in x,

T0 = −x, (3)

the non-dimensional momentum equation reduces to

∂W

∂t
= −G0x− G1x cosωt+

∂2W

∂x2
(4)

in which ω is the non-dimensional oscillation frequency and the Grashof numbers G0

and G1 are based on g0 and g1, respectively,

G0 = g0α∆TH
3/ν2, (5)

G1 = G0g1/g0. (6)
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The boundary conditions are W = 0 at x = ± 1
2
. The velocity field for the basic flow is

W0(x, t) = W01(x) +W02(x, t)

=
G0

6

(
x3 − x

4

)
+
G1

ω

{
−x sinωt+

N1(x) sinωt+N2(x) cosωt

2 sinh2 λ cos2 λ+ sin2 λ cosh2 λ)

}
(7)

in which

N1(x) = (cos λ sinh λ) cos 2λx sinh 2λx+ (sin λ cosh λ) sin 2λx cosh 2λx,

N2(x) = (cos λ sinh λ) sin 2λx cosh 2λx− (sin λ cosh λ) cos 2λx sinh 2λx,

λ = (ω/8)1/2.

 (8)

The steady part of the basic velocity is the familiar cubic distribution with the max-
imum value of |W01/G0| = (72

√
3)−1 = 8.02 × 10−3. The unsteady part is inversely

proportional to ω and its magnitude is antisymmetric with respect to ωt = π. In
figure 1, we show the distribution of W02(x, t)/G1 for ω = 20 during the half-cycle
0 6 ωt 6 π. It is seen that the maximum magnitude reaches ∼7.0×10−3. We anticipate
that gravity modulation can have important effects on the stability of the flow as
g1/g0 approaches 1 and ω 6 20.

In a steady gravity field, natural convection in the slot becomes unstable as G0

becomes large and the instability takes the form of a vertical array of convection
cells (Vest & Arpaci 1969; Hart 1971). Accordingly, we investigate the stability of
convection in a gravity-modulated fluid assuming all perturbations are periodic in z,
e.g.

u′(x, z, t) = ũ(x, t)eikz, w′(x, z, t) = w̃(x, t)eikz,

T ′(x, z, t) = T̃ (x, t)eikz, p′(x, z, t) = p̃(x, t)eikz.

}
(9)

When these quantities are substituted into the basic equations and the nonlinear terms
are neglected, we obtain the following linear stability equations in which the tilde has
been dropped:

∂

∂t
(D2 − k2)Ψ − ik[Ψ D2W0 −W0(D

2 − k2)Ψ ]− (D2 − k2)2Ψ

= − (G0 + G1 cosωt) DT , (10)

∂T

∂t
+ ik(W0T −Ψ ) =

1

Pr
(D2 − k2)T . (11)

In these equations, D = d/dx, Pr = ν/κ, with κ the thermal diffusivity, and Ψ is the
perturbation stream function,

u = ikΨ and w = −DΨ. (12)

The boundary conditions at x = ± 1
2

at any t are

Ψ = DΨ = T = 0. (13)

3. Method of solution
We use the Galerkin method for the stability analysis. The perturbation quantities

Ψ and T are expanded into their respective trial functions, Ψn and Tn:

Ψ (x, t) =

N∑
n=1

an(t)Ψn(x), T (x, t) =

n∑
n=1

bn(t)Tn(x), (14)
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Figure 1. Oscillatory part of the basic velocity distribution in the slot at
ω = 20 for 0 6 ωt 6 π.

with Ψn(x) the Chandrasekhar (1961) functions and Tn the trignometric functions:

Ψn(x) =


cosh (ρnx)
cosh (ρn/2)

− cos (ρnx)
cos (ρn/2)

where tanh (ρn/2) + tan (ρn/2) = 0 if n odd

sinh (µnx)
sinh (µn/2)

− sin (µnx)
sin (µn/2)

where coth (µn/2)− cot (µn/2) = 0 if n even,

(15)

Tnx =

{
cos nπx, n odd
sin nπx, n even.

(16)

When the truncated series expansions, (14), are substituted into (10) and (11) and
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the Galerkin operations are performed with unity weighing function, we obtain

d

dt

{
ai
bi

}
=

[
Cji 0
0 Fji

]−1 [
Dji −(G0 + G1 cosωt)Eji
Gji Hji

] [
ai
bi

]
. (17)

The coefficient matrices are defined by

Cji =

∫ 1/2

−1/2

ψj(D
2 − k2)ψidx = 〈ψj, (D2 − k2)ψi〉,

Dji = 〈ψj, (D2 − k2)2ψi + ikψj, [ψi D
2W0 −W0(D

2 − k2)ψi]〉,
Eji = 〈ψj, DTi〉, Fji = 〈Tj, Ti〉,
Gji = 〈ikTj, ψi〉, Hji = 〈Tj, Pr−1(D2 − k2)Ti − ikTj, W0Ti〉.


(18)

All of these inner products are expressible in closed form.†
Equation (17) is a system of simultaneous ordinary differential equations for the

amplitude functions ai(t) and bi(t) with periodic coefficients. According to Floquet
theory (Yakubovich & Starzhinskii 1975; Joseph 1976), the solution vector φ(t) of
such a system can be written as

φ(t) = eβtΦ(t) (19)

where β is complex and φ(t) is a vector periodic function with period τ = 2π/ω. The
characteristic exponent β is given by

β =
l

τ
ln µ (20)

where µ is the eigenvalue of the Floquet transition matrix obtained by integrating
(17) over the period τ with initial conditions given by the identity matrix.

To obtain the Floquet transition matrix, the 2N equations in (17) must be inte-
grated 2N times over the period τ (= 2π/ω) by numerical means. When the gravity
modulation frequency ω is large, the time interval over which the integrations are
performed is relatively small. As a consequence, the numerical integration is relatively
time efficient and yields accurate results. But when ω is relatively small, the integra-
tions become time consuming with deteriorating accuracy due to error accumulation.
In this paper, we use the more efficient Chebyshev expansion method of Sinha & Wu
(1991) to obtain the Floquet transition matrix. This method is explained in detail by
Sinha & Wu, so only a brief summary is presented here. The amplitude functions, ai(t)
and bi(t), and the periodic function, cos ωt, are each expanded into shifted Chebyshev
polynomials of the first kind, T ∗n (t̂), in the interval 0 6 t̂ 6 1 where t̂ = t/τ. The scalar
product and the integrals of these polynomials can be expressed by the following
recurrence relationships:

T ∗n (t̂)T ∗m(t̂) = 1
2
[T ∗n+m(t̂) + T ∗|n−m|(t̂)], n, m = 0, 1, 2, . . . , (21)

∫ t̂

0

T ∗n (t̂) dt̂ =


[T ∗2 (t̂)− T ∗0 (t̂)]

/
8, n = 1

1

4

[
T ∗n+1(t̂)

n+ 1
− T ∗n−1(t̂)

n− 1

]
− (−1)n

2(n2 − 1)
, n = 0, 2, 3, . . . .

(22)

† The inner products are not listed in the paper because of their excessive length. Some of these
are listed by Paliwal (1979). The rest are available on request to C. F. C.
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As a result, the solution for the Floquet transition matrix becomes algebraic with
no time integration needed. However, such a simplification is accompanied by the
increased number of terms involved in the double expansion.

In order to obtain satisfactory convergence of the numerical procedure, we first
determined the number of Galerkin terms needed to obtain satisfactory convergence
(relative error < 2.5 × 10−4) under steady gravity. For the gravity modulation case,
we used the same number of Galerkin terms, with a systematically increased number
of Chebyshev terms, until satisfactory convergence was obtained. The number of
Galerkin terms depends on Pr, while the number of Chebyshev terms depends on
g1/g0 and ω, with more terms needed for large g1/g0 and small ω. The accuracy of
the Chebyshev expansion method was checked by (a) comparing the critical Grashof
number as the modulation amplitude ratio g1/g0 approaches zero to that for the
steady gravity case and (b) comparing with the time integration method for ω > 100.
For a fluid with Pr = 1.0, using a 12-term Galerkin expansion, the steady gravity
critical Grashof number, G0c, is 7939.82 at the critical wavenumber kc = 2.81. These
values are slightly higher than the G0c = 7880 and kc = 2.65 found by Vest &
Arpaci (1969), probably due to the larger number of terms used in our Galerkin
expansion, but slightly lower than G0c = 8037.59 and kc = 2.80 found by Suslov &
Paolucci (1995) using an integral Chebyshev collocation method. The values of G0c

and kc calculated using the 12-term Galerkin expansion and the 14-term Chebyshev
expansion for ω = 20 at g1/g0 = 0.02, 0.01, and 0.005 are:

g1/g0 kc G0c

0.02 2.81 7940.15
0.01 2.81 7939.90
0.005 2.81 7939.84

In addition, we have compared the Chebyshev expansion method with the time
integration procedure using a 12-term Galerkin expansion for ω > 100 with 0.2 <
g1/g0 < 1.4. The results agree completely up to g1/g0 = 0.8 and within 0.25% for the
rest. It is concluded that the Chebyshev expansion method is sufficiently accurate. We
also found this method to be more efficient than the time-integration method for the
frequency range considered, 20 to 1000.

4. Kinetic energy analysis
It is known that the instability under steady gravity is either shear driven or

buoyancy driven, depending on whether the Prandtl number of the fluid is smaller or
larger than 12.5, respectively. Suslov & Paolucci (1995)† examined the linear stability
of natural convection of a non-Boussinesq flow with a low Prandtl number. The
results show that, when ∆T is increased beyond the critical value, there is a sharp
decrease in the critical Rayleigh number, accompanied by a sudden decrease of the
critical wavenumber. A detailed analysis of the perturbation kinetic energy carried
out by Suslov & Paolucci showed that the shear-driven instability at small ∆T became
buoyancy driven as ∆T exceeded the critical value. It is of interest in the present
problem to examine if additional gravitational forcing due to either an increase in the
modulation amplitude, g1, or an increase in the modulation frequency is the cause of
the observed mode switching. For this purpose, we examine all the terms that make

† We are indebted to the referee who brought this paper to our attention.
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Figure 2. Effect of modulation amplitude ratio, g1/g0, on the critical Grashof number, G0c, for
Pr = 1 at selected modulation frequencies, ω = 20, 100, 170, 235, 500, and 1000. All instabilities
are in the synchronous mode.

up the substantial derivative of the perturbation kinetic energy:

d

dt

〈
1
2
(|u′|2 + |w′|2)〉 = Re 〈u′∗Dp′ − ikw′∗p′〉 −Re 〈w′∗u′DW0〉

+(G0 + G1 coswt)Re 〈w′∗T ′〉 − {k2〈|u′|2 + |w′|2〉
−Re 〈u′∗D2u′ + w′∗D2w′〉} (23)

in which 〈 〉 denotes the mean across the slot, Re the real part, and ∗ the complex
conjugate. Equation (23) shows that the rate of change of the perturbation kinetic
energy is composed of four terms: the rate of work done by (a) the pressure gradient,
(b) the mean shear, and (c) the buoyancy force; and the rate of dissipation, which is
negative definite throughout the cycle. According to Floquet theory, the perturbation
kinetic energy at the marginal state is a time-periodic function rather than a constant,
as is the case for steady gravity. It is noted that u′, w′, and T ′ are the sums of their
respective expansions, and the pressure gradient terms can be obtained using the
momentum equations.

5. Results and discussion
5.1. Pr = 1.0

We first consider Pr = 1.0 since Baxi et al. (1974) presented results for the critical
Grashof number for ω = 100, 500, and 1000. These will provide us with a basis for
comparing our results. In figure 2, we present the critical Grashof number, G0c, as a
function of the modulation amplitude ratio, g1/g0, for ω = 20, 100, 170, 235, 500, and
1000. Our results for ω = 100, 500, and 1000 show the same characteristics as those
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given by Baxi et al., except that our values are slightly higher, again probably due
to the larger number of Galerkin terms in our calculation. For these calculations, at
ω = 20, we used 12 Galerkin expansion terms and 20 Chebyshev terms; for ω > 100,
only 14 Chebyshev terms were needed to obtain convergence of the result. The results
for ω = 20 lie mostly out of the range of this graph. This will be discussed in more
detail later.

For modulation frequencies 100 6 ω 6 1000, the critical states are all in the
synchronous mode. For ω = 100, the stability of the convection is slightly enhanced
by gravity modulation within the amplitude ratios considered, 0.2 6 g1/g0 6 1.4. The
maximum enhancement is obtained at g1/g0 = 1.2, with the value of G0c increased by
1.4% over that for steady gravity. For ω = 170, there is no discernible effect of gravity
modulation on the stability of convection up to g1/g0 = 1.0. Beyond this amplitude
ratio, G0c is reduced slightly. At higher ω, the effect of modulation is destabilizing.
The reduction of stability reaches its maximum value at ω = 235. At g1/g0 = 1.4, the
value of G0c is reduced by 1.5% from that at steady gravity. For a range of ω from
230 to 250, the G0c curves are very close to each other. When ω is increased beyond
250, the modulation effect becomes smaller, although it is still slightly destabilizing
at ω = 1000.

Jin & Chen (1997) found by numerical simulation of a tall, narrow tank with aspect
ratio 20 that stability is considerably enhanced at ω = 25 and g1/g0 = 1 for a Pr = 1
fluid. More specifically, they found that the critical Grashof number at steady gravity
is 8800–8900. At ω = 25, steady convection still prevailed at G0 = 10 000. To gain
a better understanding of the phenomenon, we have studied the case of ω = 20 in
some detail. It is found that the marginal stability curve is bimodal, consisting of
a synchronous and a subharmonic branch. For g1/g0 6 0.8, the instability is most
critical in the synchronous mode. As g1/g0 = 0.8 is approached, the critical Grashof
number of the subharmonic mode approaches that for the synchronous mode. This
is shown in figure 3, in which the marginal stability curves (Grashof number G0 vs.
wavenumber k) for g1/g0 = 0.78, 0.80, 0.81, and 0.83 are presented. At g1/g0 = 0.78,
figure 3(a), the synchronous mode with a larger wavenumber, k, is the more critical. As
g1/g0 is increased to 0.80, figure 3(b), the critical Grashof number of the synchronous
mode became slightly higher than that of the subharmonic mode. At g1/g0 = 0.81,
figure 3(c), the difference between the two modes is clearly discernible, with the
G0c of the subharmonic mode −2.1% less than that for the synchronous mode. At
g1/g0 = 0.83, figure 3(d), the difference between the two critical Grashof numbers
becomes quite obvious. The variation of the critical Grashof number with amplitude
ratio g1/g0 for ω = 20 is shown in figure 4. The synchronous mode is shown by the
solid line, and the subharmonic mode by the dotted line. As g1/g0 is increased from
zero, there is a steady increase of G0c from 7939 to a maximum value of 8913, at
g1/g0 = 0.8, a 12.3% increase, which is comparable to the 13% increase reported by
Jin & Chen. Beyond g1/g0 = 0.8, the subharmonic mode becomes the critical one,
and G0c decreases. At g1/g0 ≈ 0.92, gravity modulation becomes destabilizing. The
synchronous mode, after reaching a maximum critical Grashof number at ∼10 700,
drops sharply and becomes the more critical mode at g1/g0 ≈ 1.3. In figure 5, the
critical wavenumber, kc, shows abrupt changes at g1/g0 = 0.8 and 1.3, where the
mode switchings take place.

The result that the critical instability alternates between the synchronous and
subharmonic modes as the modulation amplitude is increased at a constant frequency
is quite similar to earlier results for convection in a horizontal fluid layer found by
Gershuni et al. (1970), Gresho & Sani (1970), Saunders et al. (1992), and Terrones
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Figure 4. Variations of the critical Grashof number, G0c, with modulation amplitude, g1/g0, at
Pr = 1 and ω = 20. ———, Synchronous mode; - - - - -, subharmonic mode.
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& Chen (1993). Stability equations for this type of problems can be reduced to the
Mathieu equation, which has asymptotic stable solutions in either the synchronous
or the subharmonic mode, depending on the modulation frequency and amplitude.

The results of Suslov & Paolucci (1995) suggest that mode switching of the instabil-
ity can be caused by increased gravitational forcing (increasing ∆T in their problem).
In order to determine whether the mode switching at g1/g0 = 0.8 in the present
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Figure 6. Contributions to the rate of change of perturbation kinetic energy at the marginal state
for Pr = 1.0, ω = 20, and g1/g0 = 0.80 in the subharmonic mode. ∗, shear; ·�, buoyancy; +,
dissipation; ·�, d/dt(KE). Results are shown for two modulation periods.

problem is caused by increased gravitational forcing or is a dynamical response to
the modulation, we apply the perturbation kinetic energy analysis to the case of
Pr = 1 shown in figure 3(b) in which the critical instability has just switched from
the synchronous to the subharmonic mode at g1/g0 = 0.8. All the terms appearing
on the right of (23) are calculated over two modulation periods and are plotted in
figure 6 with all values normalized with respect to the maximum value in the shear
work term. Rather than the work done by the pressure gradient, we present the time
rate of change of the perturbation kinetic energy in figure 6. It is seen that there is
active energy transfer from the mean shear to the instability during the first half of
each cycle. Within the same time period, the buoyancy work is a small fraction of
the shear work. The second half of the cycle is shown enlarged in figure 7, in which
only shear and buoyancy work terms are shown. It is seen that, for approximately
one-quarter of the cycle, buoyancy contributes more than shear to the perturbation
kinetic energy. Averaged over one cycle, the ratio of buoyancy to shear contribution
is 0.065, showing that the instability is certainly shear dominated. Calculations were
also made for the case shown in figure 3(a) in which the instability is in the syn-
chronous mode at g1/g0 = 0.78. Similar results were obtained, with shear work much
larger than buoyancy work. For Pr = 1, the instability is shear driven, and the mode
switching is a dynamical response to the gravity modulation.

5.2. Pr = 25.0

Under steady gravity, the marginal stability curve for the slot convection problem
consists of two branches, the steady convection mode and oscillatory mode. For fluids
with Pr < 12.5, the steady convection mode is the critical one and the critical Grashof
number, G0c, is a constant. But, for fluids with Pr > 12.5, the oscillatory mode is
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Figure 7. Enlarged view of contributions of shear (∗) and buoyancy ( ·�) to the rate of
change of perturbation kinetic energy for τ = 0.5 to 1.0.
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Figure 8. Marginal stability curve for Pr = 25 under steady gravity showing the steady convection
branch (———) and the oscillatory branch (- - - - -).

the more critical one, with G0c decreasing with increasing Pr (Chen & Pearlstein
1989). In figure 8, we show the marginal stability curve for Pr = 25, the case under
consideration, with the steady convection mode indicated by a solid line and the
oscillatory mode by a dashed line, which forms a lower detached branch of the
marginal curve. The critical Grashof number G0c = 1888, with a critical wavenumber,
kc = 1.8, oscillating at a critical frequency σc = 27.2.
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Figure 9. The critical Grashof number, G0c, over a range of modulation frequencies, ω, for Pr = 25
at g1/g0 = 0.5. Note the resonant interaction in the frequency range 45 < ω < 60. ———,
Quasi-periodic mode; - - - - -, subharmonic mode.

When the same vertical fluid layer is subjected to gravity modulation, the steady
convection mode shown in figure 8 becomes the synchronous mode, with the fluid
in each convection cell oscillating at the modulation frequency. The oscillating mode
now becomes the quasi-periodic mode (Joseph 1976; Terrones & Chen 1993), in which
the characteristic exponent β in (19) is the product of functions with incommensurate
frequencies. As a result, any given wavenumber, there are two instability modes
oscillating at incommensurate frequencies, whose sum is the modulation frequency.
The quasi-periodic mode, similar to its counterpart the oscillatory mode under steady
gravity, is generally the critical mode.

We study the possible resonance effect by calculating the critical state for a given
amplitude ratio, but with modulating frequency, ω, varying 0 to 170, paying particular
attention to ω = 27.2 and its harmonics. These calculations were made with 30
Galerkin terms and 12 Chebyshev terms. For g1/g0 = 0.1, there is essentially no
effect on the critical Grashof number throughout the forcing frequency range. At
g1/g0 = 0.5, noticeable effects are found in the neighbourhood of ω = σc and 2σc,
as shown in figure 9. In this figure, the horizontal short-dashed line indicates the
critical Grashof number under steady gravity, and the solid line represents the quasi-
periodic mode. At ω = 27.2, the stability is slightly enhanced by approximately 6%.
In the neighbourhood of ω = 54.4 = 2σc, however, the stability is greatly reduced,
reaching a minimum value of G0c = 1523 at ω = 50, a 19% decrease from the
steady gravity value. The instability is in the subharmonic mode indicated by a long
dashed line. It is anticipated that as g1/g0 is increased from 0.5, the resonance effect
will be increased, thus reducing stability further. The six critical points shown in
the frequency range 45 < ω < 60 are all in the subharmonic mode, occurring on
closed, detached branches of the marginal stability curves. Such a branch is shown
for ω = 2σc = 54.4 in figure 10. The detached subharmonic branch is at the lower
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Figure 10. Marginal stability curve for Pr = 25 at ω = 54.4 and g1/g0 = 0.5.
- - - - - - -, Quasi-periodic mode; detached subharmonic mode at lower right.

ω σ1 σ2

σc 27.2 26.44 0.76
2σc 54.4 27.20 27.20
3σc 81.6 26.31 55.29
4σc 108.8 27.69 81.11
5σc 136.0 27.73 108.27
6σc 163.2 27.77 135.43

Table 1. The values of σ1 and σ2 for ω = σc and its higher harmonics.

right. The wavenumber associated with the subharmonic branch is generally higher
than that for the quasi-periodic branch.

The resonance effect occurring at ω ≈ 2σc rather than at σc is due to the peculiar
nature of the instability modes, which oscillate at two different frequencies. The values
of σ1 and σ2 are listed in the table 1 for ω = σc and its higher harmonics. It is seen that
one of the instability frequencies, say σ1, is always at a value near σc while σ2 = ω−σ1.
As ω approaches 2σc, both wave are oscillating in the neighbourhood of σc, enabling
the coupling of the forcing with the instability modes. Once the frequencies become
equal, a resonance condition is attained, resulting in the reduction of stability, and
the oscillation is in the subharmonic mode.

The results of the perturbation kinetic energy analysis for the resonant interaction
case at ω = 54.4 with g/g0 = 0.5 are shown in figure 11, where all energy terms
are normalized with respect to the maximum value of the buoyancy work term. In
contrast to the Pr = 1 case shown in figure 6, active energy transfer occurs in 70% of
the cycle. The buoyancy contribution to the perturbation kinetic energy overwhelms
that of the shear. It is noted that, for approximately one-quarter of each cycle, the
shear contribution is slightly larger than the buoyancy contribution. Averaged over
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Figure 11. Contribution to the rate of change of perturbation kinetic energy at the marginal state
for Pr = 25, g1/g0 = 0.5, and ω = 54.4 at the resonance condition in the subharmonic mode. ∗,
shear; ·�, buoyancy; +, dissipation; ·�, d/dt(KE). Results are shown for two modulation periods.

one cycle, the ratio of shear to the buoyancy contribution is 0.027, exactly opposite
to the Pr = 1 case, even though both instabilities are in the subharmonic mode.
Calculations made for ω = 27.2 and 81.6 (σc and 3σc), for which the instability is
the quasi-periodic mode, show that the averaged buoyancy-to-shear ratios are of the
same order of magnitude as those for the resonance case.

6. Conclusions
We have examined the linear stability characteristics of natural convection of

Pr = 1 and 25 fluids in an infinite slot under gravity modulation. For Pr = 1 and
ω = 20, analysis was carried out over a range of amplitude ratios, g1/g0, from 0.2 to
1.4. At amplitude ratios < 0.8, instability in the synchronous mode is the most critical.
As the amplitude ratio is increased, the critical Grashof number for the subharmonic
mode is decreasing and eventually becomes the critical mode at g1/g0 = 0.8. A
reverse transition occurs at g1/g0 = 1.3, where the synchronous mode again becomes
the critical one. Throughout the range of amplitude ratios studied, the stability is
slightly enhanced as g1/g0 is increased from 0 to 0.92 and becomes slightly reduced
thereafter. Analysis of contributions to the perturbation kinetic energy shows that,
for Pr = 1, energy transfer from the mean shear is the dominant mechanism for
instability regardless of its mode of oscillation, synchronous or subharmonic.

For Pr = 25, because the onset of instability under steady gravity is in the
oscillatory mode, we searched for the possible effects of resonant interaction between
the imposed gravity modulation and the oscillatory instability. Results show that,
at g1/g0 = 0.5, resonance occurs in a subharmonic mode at ω ≈ 2σc, where σc is
the frequency of oscillatory instability at steady gravity. The resonant interaction is
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destabilizing, reducing the critical Grashof number by approximately 20%. Outside
the resonant interaction zone, the instability is in the quasi-periodic mode consisting
of two waves oscillating at incommensurate frequencies whose sum is the forcing
frequency. Of the two waves, one is always oscillating near σc. When ω ≈ 2σc, both
instability waves are oscillating at the same frequency, resulting in resonant interaction
at the subharmonic mode.

Analysis of the perturbation kinetic energy shows that, for Pr = 25, the dominant
mechanism for instability is buoyancy, regardless of its mode of oscillation, quasi-
periodic or subharmonic. For both kinds of fluids, instability mode switching is a
response to the periodic forcing and is independent of the dominant mechanism for
instability.

More complicated interactions may be expected for fluids with Prandtl numbers
near the transition value of 12.5. For these cases, the marginal stability curves may
consist of all three branches, synchronous, subharmonic, and quasi-periodic, as in
the case of horizontal double-diffusive fluid layers found by Saunders et al. (1992)
and Terrones & Chen (1993). The instability characteristics of such fluids must be
examined individually.
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evaluation of some of the inner products. The financial support provided by the
NASA Microgravity Science and Application Division through grant NAG3-1328 is
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